본문 바로가기
  • SDXL 1.0 + 한복 LoRA
  • SDXL 1.0 + 한복 LoRA
Study/아두이노

[아두이노] 드론 만들기(싱글콥터 만들기) ~ #5

by 마즈다 2017. 10. 11.
반응형


아두이노 드론 만들기 #5 - 처절한 실패의 내멋대로 분석


연휴 10일…모든 연휴가 그렇듯 시작은 여유로웠으나 마지막에 남는 것은 연휴의 기분을 연장하기 위한 처절한 발악이다.
그래도 무리한 계획은 잡지 않았기에 - 오히려 너무 여유를 부렸다고 해야 할까 - 일단 목표한 바 까지는 진행을 했다.
2일에 한 번 꼴로 아이들과 함께 외출도 하고 작은아이 두발 자전거도 마스터해주고 그리고 나서도 드론을 조립하고
아두이노 스케치 코드도 수정하여 비행 테스트까지 진행을 하였다.


하지만 이 ‘비행’ 드론이 비행을 하지 않았다…-.-
또 한 번의 실패…
무식해서 용감한 것도 어느 정도지…점점 용기도 사그라드는 것 같다…ㅠ.ㅠ


오늘은 이 실패에 대한 간략한 자체분석이므로 특별한 내용은 없으니
남 뻘짓하는 것에 관심이 있지 않은 분들은 그냥 가던 길 가시는 것이 좋으리라…ㅠ.ㅠ


새로운 프레임으로 조립하기


일단 새로운 프레임의 컨셉은 이러했다.
드론 전용 Flight Controller(이하 FC)를 사용하지 않고 아두이노와 같은 범용 기판을 사용하는 경우의 핸디캡이라면 
일단 직접 프로그래밍을 해야 한다는 것 외에 FC의 역할을 하기 위해 별도의 기능들을 위한 추가 부품으로 인해 부피와
무게가 증가한다는 점이다. 더구나 프로펠러 하나짜리를 만들다보니 추가되는 부품들이 더 많아졌다.


하나 하나 따져보면, 메인 컨트롤러를 위한 아두이노 나노, 방향타를 컨트롤하기 위한 서보모터, 서보모터를 제어하기 
위한 서보모터 컨트롤러, 아두이노와 서보모터에 전원을 공급하기 위한 별도의 배터리 (ESC에 BEC 기능이 있더라도
서보모터 구동을 위해서는 별도의 배터리가 있어야 안정적일 것이다), 그리고 감압을 위한 별도의 기판까지…


이렇게 되면 사실 무게보다는 부피가 더 부담이 된다. 즉 이 부품들을 아무리 똘똘 뭉쳐 부피를 줄인다 해도 모터 밑으로
배치할 경우 프로펠러가 만들어내는 바람에 저항을 줄 수밖에 없다. 더군다나 이번에 새로 사용한 2205 2300kv급 
모터는 5인치 프로펠러를 사용하기 때문에 더더욱 부피에 민감할 수 밖에 없다.


새로운 프레임은 2205 2300kv급 모터를 염두에 두고 설계한 것이다보니 위와 같은 제약을 고려해서 각종 부품과 
배터리는 외부에 장착하는 형태가 되었다. 바로 아래 사진과 같이.



그리고 완전체의 무게는 다행히도 예상했던 것보다 많이 나가지는 않았다. 내가 사용한 SunnySky 2205 2300kv 
모터의 경우 데이터 시트 상 14.8V (4셀) 배터리 사용 시 최대 추력이 1kg에 달하는데 조립된 드론의 무게는 대략 
560g 정도였다. 무게 측면에서는 일단 안정권이라 볼 수 있었다.



무게의 균형을 위해서 배터리로 4셀 배터리 1개를 사용하지 않고 동일한 모델의 2셀 배터리 2개를 직렬로 연결해서
사용을 했다.


왜 날지를 못하니…ㅠ.ㅠ


사실 실패를 목격하기 전에는 기대 만빵이었다. 특별히 날지 못할 조건이 없었기에 지난 번 테스트 때처럼 삐딱하게라도
날아 오를 것으로 기대했었다.


그러나…


이틀간의 실험에서 이 무늬뿐인 드론은 단 1mm도 뜨지 않았고 2일째에는 최대 출력에서의 진동 때문인지 드디어 모터
지지대가 자리를 이탈하면서 프로펠러가 프레임 일부를 잘라먹고 3엽 프로펠러 날개도 한짝이 부러져버렸다. 
아래 이미지는 그 처참한 결과물이다.



여전히 무작정 내 멋대로 만들기나 할 뿐이지 지식적인 진전은 없다보니 도무지 이 드론이 왜 뜨질 않는지 납득이 가질 
않는다. 납득이…


다만 예전에 로봇을 만들 때 경험했던 torque의 개념을 응용해보자면 같은 무게의 물체를 들어올릴 경우 모터의 중심
축으로부터 들어올릴 물체의 거리가 멀어질수록 모터의 힘이 더 세야 한다는 논리, 역으로 말하자면 모터의 힘이 동일
하다면 들어올릴 물체가 모터의 중심 축에 가까울 수록 더 무거운 물체를 들어올릴 수 있다는 논리에 의해 대부분의
무게를 차지하는 배터리와 기판들을 드론의 바깥쪽에 배치한 것이 치명적인 실수가 아니었을까 추측을 해본다.


하지만 앞서 언급했듯이 5인치 프로펠러를 사용하는데 모터 밑으로 각종 부품들을 배치하다보면 그 부피가 커져 분명
바람의 저항이 커질 것이고 역시나 날지 못하는 슬픈 드론이 되고 말 딜레마에 빠져있는 것이다. 게다가 내가 프로펠러
하나짜리 드론을 만들고자 했던 이유 중 하나가 비교적 소형화된 기체를 만들고자 함이었는데 위와 같은 문제를 해결
하고자 프로펠러 사이즈를 키운다는 것(물론 모터도 그에 맞게 바꾸어야 할 것이고) 또한 또다른 딜레마가 되고 만다.


이래저래 새로운 방법을 찾아야 할 처지가 된 것이다.


니들이 Coanda 효과를 알아!


아…제목은 그저 ‘니들이 게 맛을 알어!’에 대한 아재스런 패러디일 뿐이다…-.-
유튜브를 검색해보면 이미 10년전에 이 coanda 효과를 이용한 드론을 날린 사람들이 수두룩하다.
그러니 지금 내가 이 이론을 거들먹 거리면서 말할 게제는 아니어도 한참 아니다.
바로 그 10년전 영상을 먼저 감상좀 해보자.

https://youtu.be/sdGVI7kJld0


Coanda 효과라는 것은 이런 것이다.

http://terms.naver.com/entry.nhn?docId=703245&cid=50320&categoryId=50320


분류가 건축용어사전이네…-.-
더 자세한 내용을 알고 싶으면 영어의 장벽을 넘으시라…ㅠ.ㅠ

https://en.wikipedia.org/wiki/Coandă_effect


동영상을 보면 coanda 효과를 이용한 드론은 프로펠러 하단에 마치 치마와 같은 곡면의 구조물을 갖추고 있다.
이는 프로펠러의 바람에 저항을 일으키는 것이 아니라 바람이 그 곡면을 따라 흐르면서 아래쪽으로 ‘다운워시’라고
하는 공기의 흐름을 만들어내고 이 힘으로 뜨게 되는 것이다. 이 치마 형태의 구조물에 부품을 넣게 되면 부피의 부담
없이 드론을 만들 수 있게 되는 것이다.


다만 프로펠러 사이즈와 치마 형태의 구조물이 어느정도의 크기 비율을 가져야 하는지, 즉 치마 형태의 구조물을 얼마나
작게 만들 수 있는지가 관건인데 이런 자료는 아무리 찾아봐도 보이지가 않는다…ㅠ.ㅠ 역시나 뻘짓과 삽질의 전도가
매우 양양하다…


정리


사실 내가 이번 실패의 원인을 제대로 분석하고 있는지도 잘 모르겠다. 적절한 프로펠러를 쓴 것인지, 배터리는 적절한
용량을 사용한 것인지, 프레임 설계상의 다른 문제는 없었는지…


어쨌든 큰돈 들여 설계하고 제작한 이 MDF 프레임은 띄우기가 쉽지 않아보인다…ㅠ.ㅠ


위에서는 Coanda 효과를 언급했지만 사실 Coanda 효과를 이용한 드론도 프레임 형태를 만들기가 쉽지 않은 터라
아마도 그에 앞서 지난 포스팅에 만들었던 형태의 드론을 먼저 만들게 될 것 같다. 물론 사이즈는 더 커질 것이고…
올해 안에 띄우는 게 목표인데 벌써 10월 중순에 접어들고 있으니 이거 계획대로 띄울 수 있을지 모르겠다…


암튼 도전은 계속 될 것이고 언젠가는 띄우고 말 것이다!
이상 눈물 없인 볼 수 없는 애련의 실패기를 마친다…ㅠ.ㅠ







반응형