본문 바로가기
  • SDXL 1.0 + 한복 LoRA
  • SDXL 1.0 + 한복 LoRA
Study/인공지능학습

소스코드로 텐서플로우 맛보기 : [CNN] CIFAR-10 ~ cifar10.py

by 마즈다 2018. 2. 20.
반응형

Tensorflow









소스코드로 텐서플로우 맛보기 : [CNN] CIFAR-10


지난 포스팅에서 살펴보았던 cifar10_input.py는 데이터를 불러와서 이미지를 임의 조작한 후 배치 사이즈 크기로
나누어 담아 리턴해주는 기능을 하였다. 전체 프로세스의 가장 첫 단계라고도 할 수 있다.


오늘 살펴볼 cifar10.py는 가장 핵심적인 소스로 모델과 네트워크를 구성하는 내용이 주를 이루고 있다.
그만큼 코드의 길이도 전체 소스 중 가장 길다.


차근차근 살펴보도록 하자.


cifar10.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

지난 포스팅과 마찬가지로 위 3줄의 import 문은 python 2와 3의 호환성을 위한 것이다.


# OS의 자원을 사용할 수 있게 해주는 모듈
import os
# 정규표현식을 사용할 수 있게 해주는 모듈
import re
# python interpreter에 의해 관리되는 변수나 함수에 접근할 수 있도록 해주는 모듈
import sys
# tar 압축을 핸들링할 수 있게 해주는 모듈
import tarfile

여러 다양한 기능을 사용할 수 있게 해주는 import문들이다. os, sys, tarfile 등은 원격으로 cifar10 데이터셋을
다운로드 받기 위해 쓰인다.


# six 모듈은 python 2와 3의 함수를 함께 사용할 수 있도록 해줌. urllib는 URL 관련 모듈로 역시
# 데이터 셋 다운로드에 사용된다.
from six.moves import urllib
#텐서플로우 모듈
import tensorflow as tf

# 지난 포스팅에서 살펴본 cifar10_input.py 참조
import cifar10_input

몇가지 모듈이 추가로 import 되었으나 대부분 CIFAR10 데이터 셋을 원격으로 다운로드 받기 위한 것으로 이미
별도로 데이터 셋을 다운로드 받아두었다면 무시해도 좋을 것이다.


소스 앞부분에 영문으로 중요한 함수에 대한 설명이 주석으로 달려있다. 일단 간단하게 그 내용을 살펴보면 
다음과 같다.


  • inputs, labels = distorted_inputs( )
    : 학습에 사용할 데이터를 불러온다. 이 함수 안에서 cifar10_input.py에 있는 distorted_inputs( )
    함수를 호출하여 처리한다.
  • predictions = inference(inputs)
    : 파라미터로 전달되는 모델(inputs)에 대한 추론을 계산하여 추측한다.
  • loss = loss(predictions, labels)
    : 해당 라벨에 대해 예측값에 대한 총 손실 값을 구한다.
  • train_op = train(loss, global_step)
    : 학습을 수행한다.


위의 4개 함수가 가장 핵심적인 내용이라 할 수 있다.
이제 전체 코드를 차근차근 살펴보자.


# tf.app.flags.FLAGS는 상수의 성격을 갖는 값을 관리하는 기능을 한다.
# tf.app.flags.DEFINE_xxx 함수를 이용하여 첫 번째 파라미터에 사용할 이름을 넣고
# 두 번째 파라미터에 사용할 값을 설정하면 이후 'FLAGS.사용할 이름' 형식으로 그 값을
# 사용할 수 있다. 아래 첫 번째 코드의 경우 FLAGS.batch_size라는 코드로 128이라는 값을
# 사용할 수 있다.
FLAGS = tf.app.flags.FLAGS

# Basic model parameters.
tf.app.flags.DEFINE_integer('batch_size', 128,
                            """Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir', '/tmp/cifar10_data',
                           """Path to the CIFAR-10 data directory.""")
tf.app.flags.DEFINE_boolean('use_fp16', False,
                            """Train the model using fp16.""")

# Global constants describing the CIFAR-10 data set.
# cifar10_input.py에 정의되어있던 값들
IMAGE_SIZE = cifar10_input.IMAGE_SIZE  #24
NUM_CLASSES = cifar10_input.NUM_CLASSES  #10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN  #50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL #10000


# Constants describing the training process.
# tf.train.ExponentialMovingAverage에서 사용할 가중치 값
MOVING_AVERAGE_DECAY = 0.9999     # The decay to use for the moving average.
# 학습 속도 감소 후의 epoch 수
NUM_EPOCHS_PER_DECAY = 350.0      # Epochs after which learning rate decays.
# 학습률 감소를 위한 변수
LEARNING_RATE_DECAY_FACTOR = 0.1  # Learning rate decay factor.
# 초기 학습률
INITIAL_LEARNING_RATE = 0.1       # Initial learning rate.


음…수학을 깊이 들어가긴 싫지만 얼레벌레 그냥 넘어가는 것도 그러니 몇 가지 개념은 좀 알아보고 가자.


Exponential Moving Average

우선 이동평균(Moving Average)라는 것은 특정 기간동안 내에 측정된 값의 평균을 의미한다.
이 이동평균에는 단순이동평균, 가중이동평균, 그리고 여기서 사용하는 지수이동평균이 있는데
이 지수이동평균은 가장 최근 값에 더 큰 가중치를 두어 평균을 계산하는 방식이라고 한다.


일단 위 코드 중 MOVING_AVERAGE_DECAY 이후의 설정들은 모두 학습률 조정을 위한 것으로
train( ) 함수에서 사용을 하게 된다. 기본적으로 학습이 진행됨에 따라 학습률을 기하급수적으로 감소시켜
나가는 방법을 취하고 있다. 자세한 내용은 train( ) 함수 설명에서 다시 한 번 분석해보자.


# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
# 멀티 GPU를 사용하여 병렬 처리할 때 작업 이름을 구분하기 위한 구분자...언제 써볼 수 있을까...ㅠ.ㅠ
TOWER_NAME = 'tower'

# CIFAR-10의 데이터 경로
DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'


이제부터는 함수를 하나 하나 살펴보도록 하겠다.


_activation_summary(x)

# 이 함수는 전체적으로 각 레이어들을 텐서 보드에 시각화하기 위한 summary를 만드는 작업을 한다.
"""Helper to create summaries for activations.
  Creates a summary that provides a histogram of activations.
  Creates a summary that measures the sparsity of activations.
  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.summary.histogram(tensor_name + '/activations', x)
  tf.summary.scalar(tensor_name + '/sparsity',
                                       tf.nn.zero_fraction(x))


_variable_on_cpu(name, shape, initializer)

# 파라미터로 전달받은 값을 이용하여 CPU를 이용하여 처리할 변수를 생성
"""Helper to create a Variable stored on CPU memory.
  Args:
    name: name of the variable
    shape: list of ints
    initializer: initializer for Variable
  Returns:
    Variable Tensor
  """
# 0번째 CPU를 사용하겠다고 지정
  with tf.device('/cpu:0'):
# python의 3항 연산 FLAGS.use_fp16이 true이면 tf.float16을 사용하고 false이면 
# else 뒤의 tf.float32를 사용. 이 코드에서는 FLAGS.use_fp16를 false로 설정했으므로
# tf.float32를 사용하게 됨
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
# 파라미터로 전달된 변수가 이미 존재하면 재활용하고 존재하지 않으면 새로 만든다.
# 참고로 tf.Variable는 무조건 새로운 변수를 만든다. 자세한 사용법은 아래 링크 참조
# https://tensorflowkorea.gitbooks.io/tensorflow-kr/content/g3doc/how_tos/variable_scope/
    var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
  return var


_variable_with_weight_decay(name, shape, stddev, wd)

# 위의 _variable_on_cpu(name, shape, initializer) 함수를 이용하여 정규화 처리를 한 변수를 생성.
"""Helper to create an initialized Variable with weight decay.
  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.
  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.
  Returns:
    Variable Tensor
  """
# 데이터 타입 설정
# 세 번째 파라미터는 초기화 함수를 리턴하여 넘기는 것으로 truncated_normal_initializer는
# 정규분포 기반의 초기화 함수로 표준편차의 양 끝단을 잘라낸 값으로 새로운 정규분포를 만들어 
# 초기화 한다.
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))

# L2 정규화 처리를 위한 코드. wd(아마도 Weight Decay)값이 None이 아닌 경우 if문
# 안의 코드를 수행하여 정규화 처리를 하고 그래프에 추가한다.
# tf.nn.l2_loss는 전달받은 텐서의 요소들의 제곱의 합을 2로 나누어 리턴한다.
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var


위 함수들은 실제로 학습을 진행하면서 결과 값을 예측하는 과정에 사용되는 함수들이다.
자세한 내용들은 올바른 예측을 하기 위한 알고리즘을 구성하는 수학적인 내용이 포함되어있어
당장에는 이해가 쉽지 않다. 예를 들어 tf.truncated_normal_initializer의 경우 정규분포
그래프에서 2개 이상의 표준편차를 제거한 값들로 새롭게 만들어진 그래프로 초기화 한다고 해석이
되는데 사실 내용자체도 이해가 되지 않고 더 심각한 것은 수학적 개념이 포함된 영어를 해석하자니
제대로 해석이 되었는지도 모르겠다…ㅠ.ㅠ 일단은 학습을 최적화 시키고자 하는 목적으로 이러한
장치들을 사용한다는 것만 알아두면 되겠다.


distorted_inputs()

# cifar10_input.py에 있는 같은 이름의 함수를 이용하여 학습할 데이터를 불러온다.
"""Construct distorted input for CIFAR training using the Reader ops.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  Raises:
    ValueError: If no data_dir
  """

# 데이터 경로가 지정되어있지 않으면 에러~
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')

# 데이터 경로를 조합하여 최종적으로 사용할 이미지와 라벨을 가져옴
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                  batch_size=FLAGS.batch_size)

# FLAGS.use_fp16 값이 true이면 이미지와 라벨 텐서의 요소들을 tf.float16 타입으로 형변환 한다.
# 하지만 코드에는 False로 지정되어있으므로 무시.
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels


inputs(eval_data)

# 역시 cifar10_input.py에 있는 같은 이름의 함수를 이용하여 평가할 데이터를 불러온다.
# eval_data라는 파라미터가 추가된 것 외에는 distorted_inputs 함수와 내용 동일
"""Construct input for CIFAR evaluation using the Reader ops.
  Args:
    eval_data: bool, indicating if one should use the train or eval data set.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  images, labels = cifar10_input.inputs(eval_data=eval_data,
                                        data_dir=data_dir,
                                        batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels


inference(images)

# 이 소스의 핵심으로 예측을 위한 모델을 구성하는 함수
"""Build the CIFAR-10 model.
  Args:
    images: Images returned from distorted_inputs() or inputs().
  Returns:
    Logits.
  """
  # We instantiate all variables using tf.get_variable() instead of
  # tf.Variable() in order to share variables across multiple GPU training runs.
  # If we only ran this model on a single GPU, we could simplify this function
  # by replacing all instances of tf.get_variable() with tf.Variable().
  #
  # conv1
# convolution 레이어 1
  with tf.variable_scope('conv1') as scope:
# 커널(필터) 초기화 : 5 X 5 크기의 3채널 필터를 만들며 64개의 커널을 사용한다.
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 3, 64],
                                         stddev=5e-2,
                                         wd=None)
    conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')


이 부분은 CNN의 핵심이며 가장 중요한 부분이므로 좀 더 상세하게 알아보자.
일단 필터(커널보다 친숙하므로 앞으로는 ‘필터’로만 표기하겠다. 또한 원칙적으로는 bias까지 +되어야 완성된
필터라 할 수 있으나 우선은 bias를 무시하고 생각해보자)가 하는 역할이 무엇인지부터 알아보면 말 그대로 
이미지에서 지정된 영역의 특징만을 ‘걸러내는’ 역할을 한다. 


그러면 어떤 방식으로 특징을 걸러내는가?
바로 머신러닝이나 딥러닝을 처음 배울때 배웠던 xW + b의 함수를 사용해서 처리한다. 일단 bias는 무시하기로
했으니 xW만 생각해본다면 입력받은 이미지에서 필터와 겹치는 부분을 x라 보고 해당 위치의 필터를 W라 보아
x1* W1 + x2 * W2 + … + xn * Wn이 되는 것이다. 만약 3 X 3 필터를 사용하였다면 아래와 같이 계산할 수
있다.


x1 * W1 + x2 * W2 + x3 * W3 + ... x9 * W9


여기에 만일 입력 채널(이미지의 색상 채널)이 3이라면 각 채널마다 위의 계산을 적용한 후 각 채널별 출력값을
최종 더해서 하나의 feature map을 만들게 된다. 결국 하나의 필터가 하나의 feature map을 만들게 되므로
만일 필터를 여러개 사용한다면 feature map의 개수도 필터의 개수와 동일하게 만들어지고 이 수가 곧 
feature map의 채널이 된다(그리고 이 각각의 채널에 bias를 +하게 된다). 


이 내용을 이해 못해 수없이 구글링을 했으나 적절한 자료를 찾지 못했는데 아래 이미지를 보고 쉽게 이해할 수 있었다.


CNN Filter feature map

이미지 출처 : http://taewan.kim/post/cnn/


이 코드를 가지고 계산을 해보면 24 X 24 크기의 3채널 이미지를 입력으로 받아 5 X 5 크기의 3채널 필터 64개를
사용하고 padding이 원본 크기와 동일한 출력이 나오도록 SAME으로 지정되었으므로 24 X 24 크기에 64 채널을
가진 출력이 나올 것이다. 여기에 배치 사이즈가 128이므로 최종 출력 텐서의 shape는 [128, 24, 24, 64]가 된다.


# 바이어스 초기화
# 채널의 개수가 64개이므로 bias도 64개 설정. biases는 64개의 요소가 0.0으로 채워진
# vector
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))

# 가중치 + 바이어스. biases는 conv의 마지막 차수와 일치하는 1차원 텐서여야 한다.
    pre_activation = tf.nn.bias_add(conv, biases)

# 활성화 함수 추가
    conv1 = tf.nn.relu(pre_activation, name=scope.name)

# 텐서 보드에서 확인하기 위한 호출
    _activation_summary(conv1)

  # pool1
# 풀링 레이어 1
# pooling은 간단하게 말해 이미지를 축소하는 단계로 필터로 주어진 영역 내에서 특정한 값(평균,최대,최소)을
뽑아내는 작업이다. 일단 최대값을 뽑는 것이 가장 성능이 좋다고 하여 max pooling을 주로 사용한단다.
# 이 코드에서는 필터 크기가 3 X 3이므로 이 영역에서 가장 큰 값만을 뽑아 사용한다. stride는 2를 사용한다.
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                         padding='SAME', name='pool1')
  # norm1
# local response normalization라는 정규화 처리인데 ReLu 사용시 에러율 개선에 
# 효과가 있다고 하는데 이 부분은 좀 더 확인이 필요함
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm1')

  # conv2
# convolution 레이어 2
  with tf.variable_scope('conv2') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 64, 64],
                                         stddev=5e-2,
                                         wd=None)
    conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv2)

  # norm2
# local response normalization 2
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm2')
  # pool2
# 풀링 레이어 2
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1], padding='SAME', name='pool2')

  # local3
# fully connected layer 
  with tf.variable_scope('local3') as scope:
    # Move everything into depth so we can perform a single matrix multiply.
    reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
    dim = reshape.get_shape()[1].value
    weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    _activation_summary(local3)

  # local4
# fully connected layer 2
  with tf.variable_scope('local4') as scope:
    weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
    _activation_summary(local4)

  # linear layer(WX + b),
  # We don't apply softmax here because
  # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
  # and performs the softmax internally for efficiency.
# softmax layer
  with tf.variable_scope('softmax_linear') as scope:
    weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
                                          stddev=1/192.0, wd=None)
    biases = _variable_on_cpu('biases', [NUM_CLASSES],
                              tf.constant_initializer(0.0))
    softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
    _activation_summary(softmax_linear)

  return softmax_linear


이 함수의 코드는 Convolutional layer > ReLu layer > Pooling Layer > Norm layer > Convolutional layer 
> ReLu layer > Norm layer > Pooling layer > Fully connected layer > Fully connected layer > 
Softmax layer의 순으로 구성이 되어있는데 이 중 Norm layer가 정확히 어떤 역할을 하는지는 아직 잘 모르겠다.
일단 ReLu를 보조하는 것 같은데 더 알아봐야겠다.


loss(logits, labels)

# 손실 값 계산을 위한 함수
# 아래 주석에서 보이듯 logits 파라미터는 inference() 함수의 리턴 값이고 labels는 distorted_input()
# 또는 input() 함수의 리턴 튜플 중 labels 부분이다. cross entropy를 이용하여 loss를 구한다.
"""Add L2Loss to all the trainable variables.
  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]
  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
# 여기서는 sparse_softmax_cross_entropy_with_logits 함수가 사용되고 있는데
# softmax_cross_entropy_with_logits와의 차이라면 softmax_cross_entropy_with_logits
# 함수가 확률분포를를 따른다면 sparse_softmax_cross_entropy_with_logits는 독점적인 확률로
# label이 주어진다고 하는데...무슨 의미인지 잘 모르겠다...ㅠ.ㅠ 확인이 필요한 내용
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')


_add_loss_summaries(total_loss)

# 텐서 보드에 손실값 표시를 위해 손실 값에 대한 summary 추가하고
# 손실값들의 이동 평균을 구하여 리턴. 여기서 사용하는 이동 평균은 가장 최근 값에 가중치를 두는
# tf.train.ExponentialMovingAverage을 사용하여 구한다.
"""Add summaries for losses in CIFAR-10 model.
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.
  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.summary.scalar(l.op.name + ' (raw)', l)
    tf.summary.scalar(l.op.name, loss_averages.average(l))

  return loss_averages_op


train(total_loss, global_step)

# 학습을 실행시키는 함수
"""Train CIFAR-10 model.
  Create an optimizer and apply to all trainable variables. Add moving
  average for all trainable variables.
  Args:
    total_loss: Total loss from loss().
    global_step: Integer Variable counting the number of training steps
      processed.
  Returns:
    train_op: op for training.
  """
  # Variables that affect learning rate.
# 미리 정의한 변수들을 이용하여 러닝 rate를 조정할 파라미터를 결정한다. 
  num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
  decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

  # Decay the learning rate exponentially based on the number of steps.
# 학습 step이 증가할 수록 러닝 rate를 기하급수적으로 감소시키도록 처리한다.
# tf.train.exponential_decay 함수는 아래 식의 결과를 리턴한다.
# INITIAL_LEARNING_RATE * LEARNING_RATE_DECAY_FACTOR ^ (global_step / decay_steps)
  lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                  global_step,
                                  decay_steps,
                                  LEARNING_RATE_DECAY_FACTOR,
                                  staircase=True)
  tf.summary.scalar('learning_rate', lr)

  # Generate moving averages of all losses and associated summaries.
  loss_averages_op = _add_loss_summaries(total_loss)

# Optimizer 설정 및 텐서 보드에 표시하기 위한 summary 생성 후 추가
  # Compute gradients.
  with tf.control_dependencies([loss_averages_op]):
    opt = tf.train.GradientDescentOptimizer(lr)
    grads = opt.compute_gradients(total_loss)

  # Apply gradients.
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

  # Add histograms for trainable variables.
  for var in tf.trainable_variables():
    tf.summary.histogram(var.op.name, var)

  # Add histograms for gradients.
  for grad, var in grads:
    if grad is not None:
      tf.summary.histogram(var.op.name + '/gradients', grad)

  # Track the moving averages of all trainable variables.
  variable_averages = tf.train.ExponentialMovingAverage(
      MOVING_AVERAGE_DECAY, global_step)
  variables_averages_op = variable_averages.apply(tf.trainable_variables())

# tf.control_dependencies 함수는 오퍼레이션간의 의존성을 지정하는 함수로 with와 함께
# 사용하면 파라미터로 전달된 오퍼레이션이 우선 수행된 뒤 다음 문장, 여기서는 with문 아래 있는
# train_op = tf.no_op(name='train')이 수행된다. 
  with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
    train_op = tf.no_op(name='train')

# 이미 알다시피 여기까지는 그저 그래프를 만든 것 뿐, 이제 tf.Session을 통해 run을 하면
# 이전까지 구성된 그래프가 실행된다. 실제로 실행시키는 내용은 cifar10_tranin.py에 들어있다. 
  return train_op


maybe_download_and_extract()

# 웹사이트로부터 CIFAR-10 데이터 셋을 다운로드 받아 사용할 경로에 압축을 풀게 하는 함수
# 이미 별도로 데이터 셋을 받아놓은 경우는 필요 없음
"""Download and extract the tarball from Alex's website."""
  dest_directory = FLAGS.data_dir
  if not os.path.exists(dest_directory):
    os.makedirs(dest_directory)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(dest_directory, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
          float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin')
  if not os.path.exists(extracted_dir_path):
    tarfile.open(filepath, 'r:gz').extractall(dest_directory)


정리


핵심적인 내용들이 대부분 들어있는 소스이다보니 잊어버린 내용 되찾으랴 또 생소한 API 확인하랴 시간이
많이 걸렸다.


단지 시간만 많이 걸린 것이면 그나마 다행이지만 꽤 많은 부분을 이해하지 못한다는 것은 참으로 난감한 일이
아닐 수 없다…ㅠ.ㅠ 그래도 기본적인 CNN의 흐름을 따라 어찌어찌 정리는 했지만 여전히 확인해야 할 내용들이
많이 남아있다. 특히나 API의 경우 기본적으로 파라미터나 리턴 값들이 텐서를 기반으로 하고 있는데다가 설명
또한 수학적인 내용이나 용어들을 포함하고 있다보니 java나 python 같은 프로그래밍 언어의 API 문서를
대하는 것과는 그 이해의 차원이 다르다.


일단 중요한 고비는 넘겼으니 다음 포스팅에서 학습을 진행하기 위한 메인 소스인 cifar10_train.py를
살펴보고 그 다음 마지막으로 cifar10_eval.py를 살펴본 후 이 소스 코드에 등장했던 API들을 모두
차근차근 번역해봐야겠다.

반응형