반응형

이제부터는 본격적으로 Firmata를 분석해보고 사용해보도록 하자.

나의 개인적인 취향 상 분석을 먼저 면밀하게 한 후 사용을 하는 것 보다는 실제 동작하는 모습을

보면서 연관된 코드를 뜯어보는 것이 수월하기에 이번 포스팅 역시 그러한 방식으로 진행을 하겠다.

 

Firmata의 전체적인 구성은 호스트 PC 쪽의 Firmata Client와 아두이노쪽의 Firmata 스케치로 구성되어

있다. 물론 아두이노쪽에서 범용 Firmata 스케치가 아닌 Firmata 라이브러리를 사용한다면 구성이 조금

달라지겠지만 이 시리즈에서는 범용 Firmata 스케치를 사용한다는 전제로 포스팅을 하고 있다.

 

이러한 전제 하에 지난 번 포스팅의 가장 마지막에 실행했던 digital_output.py 소스를 가지고 간단하게

Firmata의 흐름과 관련 소스를 살펴보도록 하겠다.

 

다만 모든 소스를 세세하게 분석하는데는 많은 시간과 지식이 필요하므로 이번 포스팅에서는 우선 프로토콜이

어떻게 구현되는 지에 초점을 맞춰 살펴보도록 하자.

 

Firmata Client - pymata4

 

이전 포스팅에서도 언급한 바와 같이 Firmata Client는 다양한 언어로 구현이 가능하다. 그리고 이 시리즈

에서는 Python으로 된 Client를 사용하고 있으며 그 중에서도 자료가 가장 잘 정리되어있는 pymata4를

대상으로 한다.

 

pymata4의 핵심 소스는 3개의 파일로 구성이 되어있다.

 

  • pin_data.py : 아두이노의 pin mode를 설정하기 위한 각종 속성이 정의되어 있다.

  • private_constants.py : Firmata 프로토콜을 정의하는 여러가지 상수가 정의되어 있다.

  • pymata4.py : 가장 핵심적인 소스로 사용자들인 호출하여 사용할 API들이 구현되어있다.

 

단순히 Firmata를 이용하기 위해서는 pymata4.py에 있는 API를 어떻게 호출하는 지만 알면 된다. 이제

예제 코드인 digital_output.py로부터 시작하여 차근차근 알아보자.

 

digital_output.py 코드는 매우 단순하다 (코드에 집중하기 위해 원래 있던 주석은 모두 삭제하였다).

사전 이해를 위해 간단하게 코드에 주석을 붙였다. 

import sys
import time

from pymata4 import pymata4

# 사용할 디지털 핀 번호 설정. 기본 예제 코드에서는 6번을 사용한다.
DIGITAL_PIN = 6  # arduino pin number

# blink라는 함수를 구현하였다. 실제로 Firmata를 구동시키는 함수이다.
def blink(my_board, pin):
    # 가장 먼저 PIN 모드를 설정한다. 파라미터로 전달받은 핀(6번 핀)을 출력 모드로 설정한다. 
    my_board.set_pin_mode_digital_output(pin)

    # 1초 간격으로 6번 핀에 HIGH(1), LOW(0) 신호를 4회 반복하여 보낸다.
    # 이 6번 핀에 LED를 연결하여 1초 간격으로 LED가 켜지고 꺼지는 것을 4회 반복한다.
    # 직전 포스팅의 마지막 영상 참조.
    for x in range(4):
        print('ON')
	# 아두이노 보드의 6번 핀에 HIGH(1) 신호를 보낸다. LED가 연결된 경우 LED가 켜진다.
        my_board.digital_write(pin, 1)
        time.sleep(1)
        print('OFF')
	# 아두이노 보드의 6번 핀에 LOW(0) 신호를 보낸다. LED가 연결된 경우 LED가 꺼진다.
        my_board.digital_write(pin, 0)
        time.sleep(1)
    # 아두이노와의 연결을 끊는다.
    my_board.shutdown()

# 아두이노 보드의 인스턴스를 생성한다.
board = pymata4.Pymata4()
try:
    # blink 함수를 호출한다. 위에서 생성된 아두이노 보드 인스턴스와 사용할 핀 번호를 
    # 파라미터로 전달한다.
    blink(board, DIGITAL_PIN)
except KeyboardInterrupt:
    board.shutdown()
    sys.exit(0)

 

이제 위의 코드를 차근차근 살펴보자.


보드(아두이노) 인스턴스 생성하기

pymata4의 편리한 점 중 하나는 아두이노를 자동으로 찾아준다는 것이다. 아두이노와 호스트 PC간에 

정상적으로 연결만 되어있으면 단지 생성자 함수인 Pymata4()를 호출하는 것만으로 자동으로 

아두이노 보드를 찾아준다.

 

보드를 찾는 과정은 다음과 같은 로그로 확인할 수 있다.

 


/Volumes/Storage2/Firmata/FirmataTest/venv/bin/python /Volumes/Storage2/Firmata/FirmataTest/digital_write.py

pymata4: Version 1.10

 

Copyright (c) 2020 Alan Yorinks All Rights Reserved.

 

Opening all potential serial ports...

/dev/cu.wchusbserial1a1230

 

Waiting 4 seconds(arduino_wait) for Arduino devices to reset...

 

Searching for an Arduino configured with an arduino_instance = 1

Arduino compatible device found and connected to /dev/cu.wchusbserial1a1230

 

Retrieving Arduino Firmware ID...

Arduino Firmware ID: 1.1 FirmataExpress.ino

 

Retrieving analog map...

Auto-discovery complete. Found 22 Digital Pins and 8 Analog Pins


 

물론 명시적으로 필요한 파라미터를 전달하여 보드의 인스턴스를 생성할 수도 있다. 전달 가능한 파라미터는

다음과 같다(= 기호의 좌측은 파라미터 이름, 우측은 파라미터의 기본 값이다. Python은 파라미터 이름을 

사용하면 파라미터 순서와 관계없이 파라미터를 전달할 수 있으며 파라미터를 전달하지 않으면 = 우측의

기본 값이 사용된다).

 

  • com_port=None : 아두이노와 연결된 호스트PC의 포트. 위의 예에서는 /dev/cu.wchusbserial1a1230이다(매킨토시 PC에서 연결한 경우임).

  • baud_rate=115200 : 시리얼 통신 전송 속도

  • arduino_instance_id=1 : 아두이노 보드의 인스턴스 ID

  • arduino_wait=4 : 아두이노 리셋까지의 대기 시간

  • sleep_tune=0.000001 : 튜닝을 위한 파라미터로 일반적으로 수정하지 않는 것이 좋다.

  • shutdown_on_exception=True : RuntimeError Exception이나 KeyboardInterrupt exception이 발생한 경우 shutdown 함수를 호출할지의 여부

  • ip_address=None : StandardFirmataWifi 스케치를 사용하는 경우 Wi-Fi 기기의 IP 주소

  • ip_port=None : StandardFirmataWifi 스케치를 사용하는 경우 Wi-Fi 기기의 포트 번호. 보통 3030 사용

 

이와 같은 많은 파라미터들이 있으나 아무런 파라미터를 전달하지 않더라도 pymata4가 자동으로 연결된 

보드를 찾아 주는 것이다.

 

이 생성자 함수는 pymata4에서 사용할 전역 변수들을 초기화 하고 실제로 보드가 연결된 시리얼 포트를

찾는 것까지 상당히 긴 코드로 구현이 되어있어 자세한 설명은 생략하도록 하겠다. 다만 특별한 경우가 

아니라면  board = pymata4.Pymata4() 코드 한 줄로 아두이노를 연결하여 사용할 수 있다는 것만

알아두도록 하자.


blink 함수 분석 - 핀 모드 설정

Firmata를 이용하여 호스트 PC에서 아두이노의 핀을 이용하기 위해서는 먼저 아두이노 핀 모드를 설정해

주어야 한다. 그래서 가장 먼저 호출되는 API가 my_board.set_pin_mode_digital_output(pin)

이다. API 함수 이름으로 짐작할 수 있듯이 파라미터로 전달되는 pin(여기서는 6번 핀)을 디지털 출력으로 

설정하겠다는 의미이다. 그 과정을 조금 더 자세하게 살펴보자.

 

pymata4.py에서 set_pin_mode_digital_output 함수는 매우 단순하게 구현되어있다. 단지 전달

받은 파라미터인 pin에 private_constants.py에 정의된 상수인 OUPUT을 파라미터로 추가하여 private

함수인 _set_pin_mode 함수를 호출하는 것이 다이다. 전체 코드는 아래와 같다(원래의 주석은 삭제

했다).

 

def set_pin_mode_digital_output(self, pin_number):
        self._set_pin_mode(pin_number, PrivateConstants.OUTPUT)

 

_set_pin_mode 함수는 공통 함수이기 때문에 좀 더 복잡하게 구현이 되어있다. 하지만 우리는 Digital 

핀을 OUTPUT으로 사용할 것이므로 관련 부분만 집중해서 보도록 하자.

 

우선 전체 코드는 다음과 같다. 원래의 주석은 삭제를 하고 간단게 관련된 부분에만 별도의 주석을 달았다.

 

# Python에서 class의 멤버 함수들은 반드시 첫 번째 파라미터가 self여야 한다.
# 하지만 함수를 호출할 때는 self는 생략한다. 따라서 앞서 set_pin_mode_digital_output
# 함수에서 전달한 파라미터는 pin_number와 pin_state 2개이다. 나머지 2개의 파라미터는
# 전달받지 않았으므로 기본 값이 사용된다. 즉, callback은 None, differential은 1이다.
    def _set_pin_mode(self, pin_number, pin_state, callback=None,
                      differential=1):
# callback 파라미터는 전달받지 않았고 따라서 기본 값인 None을 사용하므로 아래 if문은
# 실행되지 않는다(None은 다른 언어의 null로 생각하면 된다).
        if callback:
            if pin_state == PrivateConstants.INPUT:
                self.digital_pins[pin_number].cb = callback
            elif pin_state == PrivateConstants.PULLUP:
                self.digital_pins[pin_number].cb = callback
                self.digital_pins[pin_number].pull_up = True
            elif pin_state == PrivateConstants.ANALOG:
                self.analog_pins[pin_number].cb = callback
                self.analog_pins[pin_number].differential = differential
            else:
                print('{} {}'.format('set_pin_mode: callback ignored for '
                                     'pin state:', pin_state))
#################################################################

# pin_state는 PrivateConstants.OUTPUT 값을 전달받았으므로 Pin_mode 역시
# PrivateConstants.OUTPUT 이다.
        pin_mode = pin_state

# pin_mode가 PrivateConstants.OUTPUT 이므로 아래 if문도 실행되지 않는다.
        if pin_mode == PrivateConstants.ANALOG:
            pin_number = pin_number + self.first_analog_pin
#################################################################

# _send_command 함수를 호출하여 아두이노로 통신하기 전에 마지막으로 Firmata 
# 프로토콜을 구현한다.
        command = [PrivateConstants.SET_PIN_MODE, pin_number, pin_mode]
        self._send_command(command)

# pin_mode가 PrivateConstants.OUTPUT 이므로 아래 if에서는 else절로 들어가
# 아무것도 실행하지 않고 끝낸다.
        if pin_state == PrivateConstants.INPUT or pin_state == PrivateConstants.PULLUP:
            self.enable_digital_reporting(pin_number)
        else:
            pass

 

 

위 소스 코드를 보면 대부분의 코드들은 파라미터 조건에 의해 실행되지 않거나 별다른 실행 없이 넘어가고

가장 핵심적인 부분인 Firmata 프로토콜을 구성하여 아두이노로 보내는 2줄만이 실행된다.

 

command = [PrivateConstants.SET_PIN_MODE, pin_number, pin_mode]
self._send_command(command)

 

Firmata 프로토콜 정의 문서(protocol/protocol.md at master · firmata/protocol · GitHub)

에서 보면 Message Type에 set pin mode(I/O) 라는 항목이 있고 이 항목은 다음과 같이 구성된다.

 

command MIDI channel
first byte second byte
0xF4   pin # (0~127) pin mode

 

 

그럼 이제 private_constants.py 파일을 열어 이 과정에서 사용된 2개의 상수인 OUTPUT과  SET_PIN_MODE

어떻게 정의되어 있는지 살펴보자.

 

SET_PIN_MODE = 0xF4  # set a pin to INPUT/OUTPUT/PWM/etc
...
OUTPUT = 0x01  # pin set as output

 

프로토콜로 정의된 것과 동일하게 command에 해당하는 SET_PIN_MODE0xF4 라는 값이 설정되어

있다. 나머지 2개의 파라미터는 범위 내에서 유동적으로 지정할 수 있으며 second byte에 해당하는 

OUTPUT은 카테고리 성격으로 자주 사용되는 값이므로 별도로 상수로 지정해 놓은 것이다.

 

마지막 단계의 _send_command함수도 단순한데, 전달받은 파라미터(프로토콜 포맷)를 byte 배열로 

바꾸어 serial port에 write(전송)하는 것이 끝이다. 전체 코드는 다음과 같다.

 

def _send_command(self, command):
        # 전달받은 파라미터(Firmata의 프로토콜 규격에 맞춘 데이터)를 바이트 배열로 바꾼다.
        send_message = bytes(command)

	# ip_address 전역변수가 지정되지 않은 경우 if 절 내의 내용을 실행한다.
        # 앞서 pymata4의 생성자 파라미터 설명에서 보았듯이 ip_address는 
        # StandardFirmataWifi라는 스케치에서만 사용되므로 여기서는 지정되지 않아
        # if 절이 실행되는 것이다.
        if not self.ip_address:
            try:
		# serial port에 write한다.
                result = self.serial_port.write(send_message)
            except SerialException:
                if self.shutdown_on_exception:
                    self.shutdown()
                raise RuntimeError('write fail in _send_command')
            return result
        else:
            self.sock.sendall(send_message)

 

정리

 

코드와 함께 정리하다보니 포스팅이 너무 길어진데다가 blink 함수에서 호출되는 digital_write API는 조금

복잡한 내용을 담고 있어서 다음 포스팅으로 넘기는 것이 좋을 것 같다.

 

다시 한번 강조하지만 전체 소스를 세세하게 파헤치는 것이 목표가 아니라 Firmata라는 프로토콜과 관련

라이브러리들이 어떤 흐름을 가지고 작동하는지를 아는 것이 목적인 만큼 관련 부분만 주목해서 파악하면

될 것 같다. 하지만 소프트웨어라는 것이 어찌보면 상당히 유기적이기도 한 만큼 생략으로 인해 혼란 스러운

부분도 많을 것이다. 이러한 부분들은 추후 기회를 봐서 더 상세히 다뤄보도록 하겠다.

 

그럼 다음 포스팅에서 digital_write API에 대한 내용으로 이어가겠다.

 

반응형

 

Firmata는 2가지 방식으로 사용이 가능하다.

 

그 한 가지 방법은 아두이노의 스케치에서 Firmata 라이브러리를 include한 후 라이브러리의 API를

활용하는방법이고, 다른 한 가지는 아두이노에는 범용 스케치를 업로드하고 모든 코딩을 클라이언트

쪽에서 하는 방법이다.

 

우선 두 번째 방법인 범용 Firmata 스케치를 아두이노에 업로드한 후 클라이언트에서만 코딩을 하는 방법을

알아보도록 하겠다. 이 방법은 아두이노 스케치의 C 프로그래밍에 익숙하지 않은 개발자들이 클라이언트

(호스트 PC)에서 본인에게 익숙한 언어로 개발을 할 수 있다는 장점이 있다.

 

본격적으로 Firmata의 소스 코드를 알아보기 전에 우선 간단하게 개발 환경을 먼저 정리하고 진행하고자

한다. 다만 이 글에서는 매킨토시 환경 하에서 Python Client를 선택하여 진행하는 만큼 Windows 사용자나

Python이 아닌 다른 언어를 사용하시는 분들은 다른 곳을 참조하셔서 환경을 구성하는 것이 좋을 것 같다.

 

환경 구성하기1 - 아두이노에 FirmataExpress 설치하기

 

Firmata 기반의 개발을 하기 위해서는 클라이언트(호스트 PC)에서는 Firmata Client 라이브러리를 설치

하여야 하며 아두이노에는 범용 Firmata 스케치를 업로드하는 것으로 끝난다.

 

누누이 말하듯이 Firmata Client 라이브러리는 다양한 언어로 구현이 되어있다. 각자에게 익숙한 언어로 된

라이브러리를 선택하면 되지만 역시 가장 심플하게 구현되어있는 것은 Python으로 구현된 라이브러리이다.

나역시 Java와 iOS의 Obj-c가 주로 사용하는 개발 언어이지만 코드를 분석하고 구현하는데는 오히려

Python이 더 접근하기 쉬웠고 소스 파일 구성도 매우 단순하여 부담이 없었다.

 

일반적으로 Python 라이브러리 중에는 pyFirmata, 아두이노 범용 스케치로는 StandardFirmata를 많이 

이용하는데 나는 자료가 좀 더 상세하게 정리되어있는 pymata4와 여기에 더 적합하다는 FirmataExpress를

사용하였다.

 

아두이노에서 기본적으로 제공하는 범용 Firmat 스케치 예제들이다.

 

사용하게 될 FirmataExpress는 기본 예제에 포함되어있지 않으므로 아두이노 스케치 IDE의 라이브러리 

관리 메뉴로 들어가 검색한 후 설치해야 한다(나는 이미 설치한 후라서 Installed로 표시되고 있다).

 

1. 툴 > 라이브러리 관리... 메뉴를 선택한다.

 

 

2. 라이브러리 매니저 창에서 Firmata로 검색을 한 후 FirmataExpress를 찾아 설치를 진행한다.

 

 

3. 설치가 완료되면 파일 > 예제 > 사용자 지정 라이브러리의 예제 항목에서 FirmataExpress를 찾을 수 있다.

 

 

라이브러리가 설치된 후 파일 > 예제 > 사용자 지정 라이브러리의 예제 항목에서 FirmataExpress를 찾아

열고 아두이노에 업로드하면 아두이쪽의 준비는 끝이다.

 

환경 구성하기 2 - Python 개발환경 구성하기

 

다음은 클라이언트 쪽인데…일단 Python의 설치 및 환경설정에 대한 내용은 그 자체만으로 한 번의 포스팅으로

끝날 내용이 아니므로 여기서는 생략을 하겠다. 일단 PC에 Python이 설치되어 있다는 전제하에 진행을 하겠다.

이 부분이 어려운 경우 앞서 말한대로 각자에게 익숙한 언어로 구현된 라이브러리를 이용하면 된다.

 

일단 나는 PyCharm을 이용하여 학습을 진행하였다. PyCharm에서 Virtualenv로 프로젝트를 생성하여 코딩

하는 법에 대해서만 간략하게 설명하도록 하겠다 (현재 맥미니를 사용 중이라 매킨토시 기준으로 작성한다).

 

1. Pycharm의 File 메뉴를 선택한 후 New Project를 선택한다.

 

2. Create Project 창에서 제일 처음 Location은 그냥 두고 Project Interpriter… 항목에서 New environment using Virtualenv를 선택한다. Location 항목에 프로젝트를 생성할 경로를 입력하고 Base Interpreter는 시스템에 설치된 Python 중 하나를 선택한다.

 

3. 프로젝트를 생성할 시의 옵션으로 기존 프로젝트에 붙여넣을지, 새 창으로 열지, 현재 윈도우에서 열지를 물어보는 창. New Window로 선택하면 무난함.

 

4. 프로젝트가 생성되면 아래와 같이 창이 열린다.

 

5. Firmata를 사용하기 위해 필요한 라이브러리를 추가하기 위해 Preferences... 메뉴를 연다.

 

6. Project <프로젝트 이름> 항목을 선택한 후 Project Interpreter를 선택한다. 기본으로 설치된 pip와 setup tool 라이브러리가 보인다. 필요한 라이브러리를 추가하기 위해 하단 좌측의 + 버튼을 클릭한다.

 

7. + 버튼을 누르면 열리는 Available Packages 창에서 pymata4로 검색을 한다. 검색된 목록에서 pymata4를 선택하고 좌측 하단의 Install Package 버튼을 클릭하여 설치한다. 설치 시 의존성에 필요한 패키지를 모두 설치한다.

 

8. 설치를 하고 난 후 아래 화면과 같이 pymata4와 pyserial 2개의 패키지가 추가로 설치된 것을 확인할 수 있다. Firmata가 기본적으로 Serial 통신을 하기 때문에 의존 패키지로 pyserial이 함께 설치된다.

 

9. 이제 다시 프로젝트 화면으로 돌아가 프로젝트 이름에 마우스 우클릭을 하여 New > Python File을 선택하여 소스 코드를 입력할 Python 파일을 만든다.

 

10. 파일명을 입력하고 OK 버튼을 클릭하여 파일을 생성한다.

 

11. 일단 빠른 테스트를 위해 생성된 Python 파일에는 pymata4의 예제 중 digital_output.py 파일을 그대로 카피하여 붙여넣기 하였다.

 

12. 코딩된 Python 파일을 실행하기 위하여 Run 메뉴의 Run…항목을 클릭한다.

 

13. 코드가 실행되면서 아래의 영상과 같이 LED에 1초 간격으로 4번 불이 들어오고 프로그램이 종료된다. 하단의 Run 창에는 아래 화면과 같이 로그가 찍힌다. Auto-discovery complete. Found 22 Digital Pins and 8 Analog Pins까지는 pymata4 라이브러리에서 찍는 로그로 아두이노가 연결된 serial 포트를 찾고 아두이노 및 아두이노에 업로드된 Firmata에 대한 정보를 가져오는 내용이 출력된다.



 

 

정리

 

오늘은 간단하게 개발 환경 구성과 간단한 예제를 하나 돌려보았다.

 

본문에서 설명한 것과 같이 아두이노는 FirmataExpress 스케치를 업로드한 이후 더이상 할 것이 없다. 

이제부터 모든 아두이노 제어는 호스트 PC에서 Python(물론 지원하는 타 언어를 이용해도 됨) 언어로

코딩하여 진행하게 된다.

 

다음 포스팅부터 pymata4와 FirmataExpress를 하나하나 뜯어보면서 어떻게 동작하는지에 대해 

살펴보도록 하자.

 

반응형

 

 

지난 시간 Firmata에 대해 포스팅한 후 많은 분들이 관심을 가져주시고 또한 의문을 제기해주셨다.

그중에 가장 중요한 것이 바로 다음의 두 가지였다.

 

  1.  왜 Firmata를 사용하는가?

  2. 왜 라즈베리파이와 아두이노를 연동하여 사용하는가?

 

이런 질문을 받고 나니 확실히 어떤 목적으로, 어떤 이점이 있기에 Firmata를 사용하고 라즈베리파이와

아두이노를 연동하려고 했는지 다시 한번 고민해보게 되었다. 아무리 작고 개인적인 프로젝트라 하더라도

역시나 대충, 어물쩡, 설렁설렁 하면 안되겠다고 새삼 깨달았다. 오늘은 위 두 질문에 대한 답을 찾는

것으로 시작을 해보고자 한다.

 

왜 Firmata를 사용하는가?

 

어찌보면 이 질문의 답은 명확하다. 대략 세 가지 정도로 추려보자면

 

1. 검증받은 프로토콜의 사용

지난 시간에도 언급했듯이 디지털 기기간에 통신을 하기 위해서는 프로토콜이라는 규약을 만들고 지킬 

필요가 있다. 하지만 프로토콜을 설계하고 구현한다는 것이 그리 만만한 작업은 아니다. 때문에 이미

검증된 MIDI Message Format을 이용하여 안정적으로 구현된 프로토콜을 사용할 수 있다는 것은

큰 이점이 될 것이다.

 

2. 다양한 기기 및 언어 이용

프로토콜이 명확하게 정의되어있기 때문에 이 프로토콜 구현만 제대로 한다면 어떤 언어로든 아두이노를

제어할 수 있다. Firmata Protocol git 페이지에 가보면 다양한 언어로 구현된 Firmata 클라이언트

링크를 볼 수 있다. 또한 시리얼 통신만 가능하다면 PC 뿐만 아니라 모바일 기기에서도 아두이노를 제어할 수

있다.

 

3. 사용의 용이성

Firmata Client 프로그램들은 이 프로토콜을 손쉽게 이용할 수 있도록 API가 잘 구현되어있다. 따라서

적절한 API를 가져다 쓰기만 한다면 웬만한 아두이노 컨트롤은 손쉽게 수행할 수 있다. 게다가 아두이노에는

Firmata 라이브러리만 올려두면 추가적인 프로그래밍이나 스케치 업로드등을 할 필요도 없어 오직 호스트

PC(혹은 모바일 기기)에서만 개발자에게 익숙한 클라이언트로 프로그래밍하여 제어할 수 있다.

 

이렇게 Firmata는 아두이노를 활용하는데 많은 이점을 주는 라이브러리라고 할 수 있다.

 

왜 라즈베리파이와 아두이노를 연동하여 사용하는가?

 

이 질문은 사실 많은 고민을 하게 만들었다. 라즈베리파이도 이미 충분한 수의 GPIO 핀이 있는데 굳이

아두이노를 연결해서 사용하는 이유는 무엇일까? 라즈베리파이와 아두이노 연동, 시리얼 통신 등으로

검색을 해보면 많은 자료들이 검색되지만 정작 왜 연동을 하는지 그 목적에 대해 설명한 자료는 거의

없다. 그저 기술적인 호기심 때문만은 아닐텐데…

 

하지만 내 개인 프로젝트에 국한했을 때는 이러한 구성에 의문을 가질 수 있지만 일반적인 상황에서, 또는

아두이노를 중심에 둔다면 이러한 구성이 충분히 합리적이라는 것을 알 수 있다.

 

1. 원격 센서 제어

호스트에서 원격으로 어떤 센서로 측정된 값을 가져와 연산을 하여 처리한다고 했을 때 당연히 원격 센서는

아두이노를 사용하는 것이 가격적인 측면에서 합리적일 것이다. 라즈베리파이는 호스트로서 수신된 데이터를

연산하기만 하면 된다.

 

2. 하드웨어적인 차이

원격이 아닌 같은 모듈 내에서 사용을 하더라도 라즈베리파이와 아두이노의 하드웨어적인 차이에 의해 함께

연동하여 사용할 수 있을 것이다. 가장 큰 차이라면 역시나 GPIO인데 아두이노에는 라즈베리파이에 없는

Analog PIN이 별도로 있으며, 작동 전압도 라즈베리파이가 3.3v 인 반면 아두이노의 경우 3.3v와 5v용을

선택하여 사용할 수 있고, 핀당 사용 가능한 전류도 라즈베리파이가 16mA인 반면 아두이노는 40mA까지

사용할 수 있다. 이러한 특성상 비록 라즈베리파이에 40여개의 GPIO가 있지만 아두이노를 연동해서 사용

하는 것이 더 나은 경우도 있을 것이다.

 

하드웨어에 대한 정보들은 간단하게 아래 내용을 참고하면 될 것이다.

 

The operating voltage of the GPIO pins is 3.3v with a maximum current draw of 16mA. This means that we can safely power one or two LEDs (Light Emitting Diodes) from a single GPIO pin, via a resistor. But for anything requiring more current, a DC motor for example, we will need to use external components to ensure that we do not damage the GPIO. 

-

출처 : https://www.tomshardware.com/reviews/raspberry-pi-gpio-pinout,6122.html

 

아두이노 우노의 사양

 

위의 내용을 감안해 본다면 분명히 라즈베리파이와 아두이노를 연동하여 사용해야 하는 것이 더 유용한 경우도 

있을 것이다. 

 

Firmata의 한계

 

하지만 100% 좋은 것이 어디 있으랴.

내 구미에 맞게 커스터마이징해야 하는 경우라면 Firmata는 결코 답이 아니다. 사실 모든 라이브러리나 

프레임워크가 다 동전의 양면이 아니던가? 쉽고 편하게 사용하기 위해 적용은 하지만 정작 중요하게 

커스터마이징해야 할 때 상당히 곤란한 상황에 직면하는 경우가 적지 않다.

 

지난 포스팅에서도 언급했듯이 나역시 PCA9685 PWM 서보모터 드라이버를 Firmata 상에서 사용하려고

했으나 이와 관련된 프로토콜은 정의되어있지 않기 때문에 대안을 찾기 위해 열심히 소스 코드를 뜯어보고 

있다…ㅠ.ㅠ 해결책에 한걸음 다가갔나 싶으면 비트 연산들이 줄줄이 나와 java 프로그래밍을 위주로 해온

나에게는 결코 쉽지 않은 작업이다…ㅠ.ㅠ

 

이 부분은 글을 이어 나가면서 극복해보도록 하겠다. 

 

정리

 

원래 이번 포스팅부터 코드 분석을 들어갈 예정이었으나 위의 질문들은 프로젝트를 수행하는데 있어서 분명

중요한 시사점이 있기 때문에 집고 넘어가는 것이 좋겠다고 생각했다. 그리고 이 글을 정리하기 위해 적잖이

검색을 하고 자료를 찾아보았지만 위와같은 근본적인 질문에 대한 명쾌한 답변은 찾기가 쉽지 않았다.

 

결국 몇몇 글들과 나름의 지식을 기반으로 글을 적기는 했지만 아직도 객관적인고 명확한 근거는 모자라지 

않나 하는 아쉬움이 있다. 이 부분은 앞으로의 숙제가 될 것 같다.

 

이제 예정한대로 다음 포스팅 부터는 Firmata Client와 라이브러리 그리고 예제 코드를 통해 Firmata에 

대해 조금 더 구체적으로 알아보도록 하겠다.

반응형

로봇을 제작하면서 전자부의 구성은 라즈베리파이 + 아두이노를 사용하기로 계획했다.

일단 사양과 활용도가 높은 라즈베리파이로 각종 데이터 분석과 추후 AI를 위한기능들을 구현하고

실제 구동부의 동작은 아두이노로 제어를 하는 구조다. 물론 요즘 새로 출시된 아두이노들은 웬만한

ML 처리는 가능하지만 아무래도 활용도라든지 관리 차원에서는 라즈베리파이가 조금 더 접근하기

쉬운 것은 사실이다.

 

게다가 일반적인 아두이노 호환 컨트롤러들은 워낙에 저가여서 모터나 센서 등을 조합해서 다양한

구동부를 만들고 이것을 라즈베리파이와 연동한다면 다양한 형태의 로봇이나 차량 혹은 드론을

만들 수 있을 것이라 생각했다. 그래서 프로젝트 이름도 MORS(MOdular Robot System)이라고

지었다.

 

계획은 세웠으니 이제 구현만 하면 되는데…라즈베리파이와 아두이노를 어떻게 연결하는 것이 좋을까?

아직 한번도 해본 적이 없는 구성이라 일단 열심히 검색을 해보았다.

 

일단 가장 기본적으로 알 수 있는 방법은 우리가 PC에서 아두이노 스케치를 개발하듯이 라즈베리파이를

호스트 PC로 만들고 거기서 스케치를 코딩하고 아두이노에 업로드하여 동작하도록 하는 것이다. 하지만

이 방식으로는 아두이노의 PIN에 대해 라즈베리파이가 직접 컨트롤 할 수 없다는 문제가 있다. 즉, 라즈베리

파이가 사용자의 신호를 받았을 때 그 신호를 실시간으로 아두이노에게 전달해야 하는데 이 방식으로는

그것이 불가능하다. 

 

사실상 라즈베리파이와 아두이노가 따로 노는 상황

 

그렇다면 라즈베리파이와 아두이노의 역할을 아예 분리하는 방식을 생각해볼 수도 있다. 라즈베리파이는

부하가 큰 데이터나 ML 처리의 연산만 담당하고 아두이노는 모터나 센서등의 동작을 담당하는 식이다.

하지만 이렇게 되면 사용자가 라즈베리파이와 아두이노를 이원화 하여 컨트롤해야 하고 또 다수의 아두이노

기반 구동부를 연결하는 경우 구조가 매우 복잡해진다(사실 첫 번째 경우와 동일한 케이스인데 다만

아두이노쪽에 사용자와 통신할 수 있는 모듈(ESP, 블루투스, nRF 등)을 추가하여 아두이노를 별도로

제어한다는 점이 다를 뿐이다).

 

쌍둥이를 키우는(?) 입장이랄까?

 

그러다 찾아낸 것이 바로 Firmata이다. 앞으로 얼마간 이 Firmata에 대해 알아보고자 한다.

 

바로 이거지~

 

이 글은 비록 개발자로 일하고 있지만 태생이 문돌이인 블로그 주인의 글이니 보다 정확한 자료를 원하시는

분들은 아래 링크로 이동하여 참고하시면 되겠다. 다만 영어의 압박은 감수하셔야…

 

Firmata 문서 Git : GitHub - firmata/protocol: Documentation of the Firmata protocol.

 

Firmata는 프로토콜이다.

 

프로토콜은 잘 아시다시피 하나의 규약이다. 통신을 할 때 지켜야 할 약속으로 우리가 가장 잘 알고있는

프로토콜은 바로 워키토키를 이용하여 통신을 할 때 자신이 할 말을 마쳤으니 상대방이 말하라고 하는

의미의 “오버”를 들 수 있겠다.

 

하지만 디지털 장치로 그 영역을 옮겨오면 그렇게 단순하지는 않다. 위의 예도 사람의 입장에서 적으니

단순하게 보일 뿐 실제 워키토키가 처리하는 것은 디지털화 된 음성 데이터를 두 대의 워키토키 사이에

전달하기 위해 채널을 확인해야 하고 데이터의 순서나 손실 여부를 체크해야 한다. 이 역시 중요한 부분만

언급했을 뿐 실제로는 더 많은 내용이 오고 갈 것이다.

 

아주 간단한 프로토콜

 

이렇게 디지털 기기에서 양자간에 데이터를 주고받기 위한 규칙을 프로토콜이라고 한다. 우리가 잘

아는 TCP/IP, SMTP, HTTP, FTP 등이 모두 프로토콜이며 각각의 목적에 따라 그 규칙이 모두 다르다.

지금 공부하고자 하는 Firmata 역시 이러한 프로토콜이며 Firmata의 목적은 호스트 컴퓨터와 마이크로

컨트롤러간에 직접 통신을 할 수 있도록 하기 위한 것이다.

 

Firmata는 midi message format을 기반으로 만들어졌다고 하는데 일단 midi message format이

무엇인지까지 파고드는 것은 범위가 너무 넓어지므로 관련 링크만 걸어두겠다.

 

Official MIDI Specifications : Specs

 

여기서 midi란 우리가 잘 알고 있는 디지털 악기가 맞다(Musical Instrument Digital Interface)

 

Firmata의 구성 - 소프트웨어 관점에서

 

Firmata는 호스트 PC쪽의 Firmata Client와 마이크로컨트롤러쪽의 Firmata 라이브러리로 구성

되어 있다. 

 

Firmata Client의 경우 웬만한 언어는 모두 사용 가능한데 대표적으로 Python, java, javascript로부터

iOS, Android까지 모두 사용 가능하다. 또한 각 언어로 구현된 클라이언트도 각각의 특성에 따라 여러

버전이 있어 필요에 따라 선택하여 사용 가능하다.

 

아두이노 라이브러리는 말 그대로 아두이노에서 사용 가능한 라이브러리 형태로 되어있으며 가장 기본적인

라이브러리는 아두이노 스케치의 예제에 포함이 되어있다. 파일 > 예제 > Firmata 항목으로 들어가면 

다양한 Firmata 목록을 볼 수 있는데 가장 기본적인 것은 StandardFirmata이다.

 

아두이노 스케치에서 Firmata 라이브러리 불러오기

 

아두이노에 Firmata 스케치를 업로드하고 클라이언트에서 API를 호출하면 Firmata 프로토콜을 통해

아두이노의 해당 API가 호출되는 식이다(자세한 것은 다음에 소스 분석을 통해 알아보겠다).

 

Firmata의 구성 - 프로토콜 관점에서

 

앞서도 이야기 했듯이 프로토콜이란 통신을 위해 지켜야 할 일종의 약속이다. 즉 FirmataClient에서

약속된 형태의 데이터를 전달해야 아두이노의 Firmara 라이브러리에서 데이터를 받아들이고 처리할 수

있다. 이러한 약속들은 아래 문서에 정의되어 있다.

 

Firmata protocol : protocol/protocol.md at master · firmata/protocol · GitHub

 

 

문돌이들의 경우 몇몇 개념이 헷갈릴 수 있으나 이 약속을 지키기 위한 대부분의 처리는 이미 API로 모두

구현이 되어있으며 다양한 샘플도 존재하니 그저 API를 호출해서 사용하면 된다. 조금 더 이해의 폭을

넓히자면 이 약속이라는 것이 그저 API 호출 시 넘겨주어야 할 파라미터를 정의하는 것이라 생각하면

조금 더 이해가 쉬울 것이다.

 

예를들어 위 링크된 문서의 Message Type 중 set digital pin value라는 항목을 살펴보자

테이블을 보면 우선 command 항목은 0xF5이다. 즉, 아두이노의 특정 디지털 핀에 값을 전달하기 

위해서는 0xF5라는 값으로 시작하는 데이터를 보내야 한다. 다음 열은 비어있고 세 번째 열에

1~127 사이의 핀 번호를 입력해야 하고 마지막으로 1 또는 0으로 해당 핀에 전달할 값을 지정해야

한다. 만일 9번 핀에 디지털 신호를 보내기 위해서는 0xF5, 9, 1 또는 0xF5, 9, 0으로 구성된 3개의

데이터를 보내면 되는데 command에 해당하는 값들은 상수로 지정하여 API에서 처리를 해주므로

실제 API를 호출할 때는 command를 제외한 9, 1 또는 9, 0만을 파라미터로 하여 다음과 같이

보내면 된다.

 

digital_pin_write(pin, 1) 
digital_pin_write(pin, 0)

 

이 중에서 특히 중요한 것이 Sysex Message Format인데 이 부분은 다음 포스팅에서 다뤄보기로 하겠다.

 

정리

 

사실 Firmata에 대해 굳이 이렇게까지 알지 않아도 대충 예제를 보면서 구현하는 것은 그리 어렵지 않다.

그런데 로봇을 만들면서 서보모터를 컨트롤하는데 I2C 기반으로 통신을 하는 PCA9685 PWM 서보모터

드라이버를 사용하려고 보니 아두이노에서 전용 라이브러리를 사용해야 하고 Firmata에서는 이러한 특정

라아브러리에 대한 message format까지 모두 지정해놓은 것은 아니라서 현재로서는 사용이 어렵다.

결국 어떻게 커스터마이징 좀 안될까 하고 조금 더 파고들어가 보기로 한 것이다.

 

물론 다른 방법으로는 I2C에 대한 message format은 정의가 되어있으므로 관련 API를 이용해서 제어하는

방법도 있을 것 같은데 그 또한 그리 만만하지는 않을 것 같아서 우선은 Firmata쪽을 보기로 하였다. 만일

이 시도가 실패한다면 아마도 I2C를 이용한 PCA9685 제어에 도전하게 될지도 모르겠다.

 

다음 포스팅에서는 Sysex Message Format에 대해 알아보고 본격적으로 API와 샘플코드에 대한 분석을

진행해보고자 한다. 

 

#블로그/로봇개발

+ Recent posts