본문 바로가기
  • SDXL 1.0 + 한복 LoRA
  • SDXL 1.0 + 한복 LoRA
Study/인공지능학습

[인공지능] coral usb accelerator + Raspberry pi zero w

by 마즈다 2019. 5. 13.
반응형



2019/05/13 - [Study/인공지능학습] - [인공지능] coral usb accelerator + Raspberry pi zero w

2019/05/16 - [Study/인공지능학습] - [인공지능] Coral USB Accelerator와 Edge TPU




뭔가 하나를 진득하니 끝내야 하는데…이놈에 호들갑스러운 호기심은 눈밭에 강아지 뛰놀듯한다…
얼른 미니 드론 만들고 다음에 싱글콥터 그 다음에 4족 보행 로봇 최종판을 만들어야 하는데…
도대체 어느세월에...ㅠ.ㅠ


이번 호기심의 대상은 바로 구글에서 엣지 컴퓨팅 보드로 출시한 coral 시리즈 중에 usb 가속기인

coral usb accelerator이다. 페이스북에서 어떤 분이 올려놓으신 엣지 컴퓨팅을 위한 보드들의
성능을 비교한 해외 블로그를 보고 나니 궁금해서 견딜 수가 없었다.


Benchmarking Edge Computing


아직은 책만 줄창 읽어대고 있는 정도의 수준이라 내가 이걸 사서 제대로 써먹을 수나 있을지 의문이었지만
지름의 기본 자세인 '그래도 언젠가는 써먹겠지’라는 마음가짐으로 하나 질렀다.

그리고 다행히도 간단한 테스트 정도는 해볼 수 있었다…^^;



Edge Computing이란?


우선 본론에 들어가기 전에 엣지 컴퓨팅이란 것이 무엇인지 부터 알고 넘어가자.


예전에 메인프레임을 쓸 때는 당연한 일이었고 웹 기반의 시스템이 자리를 잡은 후에도 대부분의 중요한

연산은 서버에서 처리를 하고 클라이언트 기기(PC)에서는 자료를 입력하는 정도의 기능만 수행을 했다.

그만큼 서버는 강력한 기능을 갖고 있었고 클라이언트로부터 전송되는 데이터들은 서버가 감당하기에

충분한양이었다.


하지만 스마트폰이 지배하는 세상이 되면서 클라이언트의 종류와 그로부터 전송되는 데이터는 점점 증가를

하게 되었고 급기야 IoT라는, 모든 것을 인터넷에 연결시키겠다는 야심찬 시도가 진행되면서 이제 클라이언트는

그 종류를 한정할 수 없게 되었고 그 수많은 클라이언트들로부터 올라오는 데이터의 양은 서버가 감당하기 어려운

상황이 되어버렸다.


한편, 스마트폰을 시작으로 한 클라이언트 기기들은 소형화와 고성능화로 인해 웬만한 작업은 그 기기 내에서 처리를

할 수 있게 되었다. 예전같으면 워크스테이션에서나 가능했을 동영상 편집을 스마트폰에서도 할 수 있게 된 것이다.

상황이 이렇다보니 클라이언트 기기를 단순히 서버로 데이터를 전송하는 용도로만 사용하는 것이 엄청난 자원의 낭비가

된 것이다.


결국 가능한 한 클라이언트에서 처리할 수 있는 부분은 처리를 하고 서버에서는 연산에 높은 성능이 필요한 부분을

처리하려는 시도를 하게 되었고 이 과정에서 클라이언트 측에서 처리되는 부분을 Edge Computing이라고 부르게

되었다.


하지만 아무리 클라이언트 기기들의 성능이 좋아졌다고 해도 머신러닝이나 딥러닝을 처리하기에는 한계가 있다보니

이러한 고성능의 연산을 보조해주기 위한 많은 장치들이 개발되었다. 그 자체로 보드형태를 가지고 나온 제품과

기존의 소형 컴퓨터 보드인 라즈베리파이 등에 연결해서 사용 가능한 USB 기기 형태로 나온 제품들이 있는데

처음 소개한 블로그에서는 바로 이러한 기기들의 성능을 벤치마킹하고 있는 것이다.



무엇을 선택할 것인가?


이 블로그를 보면 몇가지 대상에 대해 상당히 많은 항목을 벤치마킹 하고 있다. 하지만 영어 울렁증의 도움으로

아주 가볍게 한 가지를 선택할 수 있었다. 바로 제일 처음 나오는 추론 속도에 대한 벤치마킹을 기준으로 가장

가성비가 높은 제품을 고르기로 한 것이다.


일단 추론 속도에 대한 벤치마킹 그래프를 보면 구글의 coral 시리즈가 매우 성능이 좋다. 그래서 1차로 coral 
시리즈를 구입하기로 결정을 했다(사실 인텔의 NCS2를 더 먼저 알게 되었고 디자인도 NCS2의 사이버틱한

디자인이 더 마음에 들었지만 벤치마킹 결과와 가성비에서 탈락했다).


라즈베리파이가 없었다면 완전체인 coral dev board를 구입했겠지만 이미 예전에 빅데이터 클러스터 공부한다고

깝죽대면서 사다놓은 라즈베리파이가 수두룩 빽빽하게 있어 비용면에서 더 저렴한 coral usb accelerator로

선택을 했다.





구매는 MOUSER에서 했으며 가격은 $74이다. 배송은 DHL로 약 2일만에 도착을 했고 배송비는 무료다!

생각보다 빨리, 안전하게 도착해서 참 다행이었다(가장 최근의 해외 직구는 banggood에서 주문한 모터를

2달 만에 받은 것이었다…-.-).



장비 연결


현재 집에 있는 라즈베리파이는 3B 모델이 5대, zero w 모델이 2대 있다. 그런데 생각해보니 3B 5대는

클러스터 만들면서 스택 케이스에 다 연결하고 배선까지 꽁꽁 묶어놓아서 도무지 풀어서 사용할 엄두가

나질 않았다.


결국 zero w를 사용하기로 결정을 했는데 이게 또 만만치 않다.라즈베리파이 zero w의 경우 USB포트가

마이크로 USB타입으로 꼴랑 2개 있다. 그나마 하나는 전원공급용이므로 실제 사용 가능한 것은 1개 뿐이다.

게다가 w가 무색하게 빌트인 된 Wi-Fi 모듈은 잘 붙는공유기 찾기가 하늘의 별따기라 어쩔 수 없이 USB 형태의

무선 랜카드를 별도로 사용해야 한다.


이렇게 해서 일단 필요한 USB장비는 벌써 2개가 되었다. USB 랜카드와 coral…여기서 또 한가지 생각지 못한

문제가 생겼다. 라즈베리파이 사 모을 때 파이 카메라 V2 버전을 같이 산 것이 있어 그 걸 사용하려고 했는데…

아뿔싸! 라즈베리파이 3B와 zero w의 카메라용 필름 케이블 소켓 크기가 다르다…OTL 변환 케이블이 있긴 있는데…
돈도 돈이고, 배송도 배송이고…ㅠ.ㅠ


다행히 아이들이 학습용으로 사용하던 USB CAM이 있어서 그걸 사용하기로 했다.
이렇게해서 총 3개의 USB장치를 붙여야 하는 상황이 되었다. 결국 USB 허브까지 하나 구매해서 어찌어찌

연결은 성공하였다~^^ (사진은 카메라 연결 전이다.)


사실 최대한 부피를 줄인 장치를 만들어보고 싶어서 보드로 zero w를 선택한 것인데 결과적으로는 배보다 배꼽이 

더 큰 상황이 되어버렸다. 나중에 기회가 된다면 하우징들은 다 벗겨버리고 연결을 해서 작은 통합 기기를 만들어
보고 싶다(하지만 성능 때문에 zero w는 못쓸 듯…-.-).






라이브러리 설치 및 테스트


공식적으로 coral usb accelerator가 지원하는 기기는 라즈베리파이 2와 3의 모델 B와 B+ 뿐이다.

즉, zero w는 공식적으로는 지원하지 않는 보드이다. 하지만 비공식적으로 설치 가능한 라이브러리가 존재하고

공식 사이트에서도 소개하고 있다. zero w에 대한 라이브러리 설치 방법은 아래 링크에서 확인 가능하다.


support for Raspberry Pi Zero


설치 방법은 매우 간단하며, 압축된 라이브러리 패키지를 다운로드 받고 압축을 해제한 후 install.sh를 실행하면

끝이다. 그리고나서 공식 사이트에 있는 설명대로 데모 프로그램을 돌려보면 된다.우선 설치 후 2개의 데모 프로그램을 

실행해보았다. 이미지 분류와 얼굴 인식을 하는 데모였는데 정상적으로결과가 나오는 것을 확인하였다. 


특히 얼굴 인식의 경우 구글에서 받은 이미지로도 테스트를 해보았는데 대체로잘 인식이 되었으나 특정 사진 한장은 전혀 

인식을 못하였다. 다양한 요인이 있을 것 같은데 정확한 이유는 모르겠다. 맨 처음 사진은 Mobilenet SSD v2에서 제공

되는 사진이고 다음 3장은 구글에서 가져온 사진인데 맨 마지막 사진은 인식에 실패했다.









성능의 문제

사실 지금까지 라즈베리파이를 사용해오면서 딱히 성능을 확인해야 할만큼 부하가 걸리는 작업을 해본 적이
없기에 굳이 따져보지 않았는데 막상 coral usb accelerator를 연결하여 이미지 분류나 인식 작업을 해보니
라즈베리파이 3 모델 B와 zero w 사이에는 엄청난 성능의 차이가 있었다.

라즈베리파이 3 모델 B에서 데모 프로그램 실행 시 얼마나 시간이 걸리는지 측정한 자료가 거의 없어 확인이
쉽지 않았는데 유튜브에서 발견한 동영상 하나에서 대략 5초 정도 걸리는 것을 확인했다.

그런데 zero w 모델에서는 15초 정도의 시간이 걸렸다. 처음에는 coral usb accelerator가 연결되지 않았는지
의심도 해보았으나 연결되지 않은 경우에는 실행 시 오류가 발생을 하였고 또 연결되었을 때 연산 시 LED가 
점멸하는 것도 확인을 하였으니 분명 coral usb accelerator가 작동을 하고 있는 것이었다.






이러한 성능의 문제는 다음에 테스트한 동영상에서의 사물 인식의 경우에 더 심각하게 나타났다.


카메라 테스트


일단 앞서 말한대로 파이 카메라를 사용할 수가 없어 USB Cam을 사용하게 되었다. 
그리고…이미 사물 인식을 하기도 전에 영상은 너무 끊겨서 적당한 수양의 과정을 거치지 않고서는 참고 
보아줄 수 없는수준이었다.

그래도 나름 참는데는 일각연이 있는 터라 테스트를 진행해보았다. 2개의 다른 소스로 진행을 해보았다.
처음 테스트는 아래의 블로그를 참고하였다.

Hands-on with the Google Coral USB Accelerator


사용한 모델 및 실행 코드 정보가 모두 위의 블로그에 정리되어 있다. 그저 다운로드 받고 실행하기만 하면
되는 생각보다 간단한 과정으로 진행할 수 있다. 아래 동영상을 보면 알겠지만 일단 상당히 느리다…ㅠ.ㅠ
인식률 또한 상상했던 것보다 좋지 않은데 두 번째 테스트와 종합적으로 봤을 때 사람과 차에 대한 인식룰은
기가 막히다. 특히 사람은 팔뚝만 슬쩍 보여도 사람으로 인식한다.

하지만 드라이버와 커터는 인식을 못했고 귤은 사과로 인식하거나 햄스터를 새, 개 등으로 인식하고 있었다.
두 번째 동영상은 유튜브에서 영상을 하나 틀어놓고 그 영상을 찍으면서 인식을 시킨 것인데 버스나 차를 대체로
잘 인식하는 것 같았다.






두 번째 테스트는 다음의 2개 사이트를 참고했다.

프미케의 낙서장
https://qiita.com/PINTO/items/dd6ba67643bdd3a0e595


사용한 모델은 첫 번째 테스트와 동일하지만 실행코드가 조금 다르다. 두 번째 테스트용 실행코드에는 초당 프레임

정보가 나오는데 위 링크한 블로그들의 프레임 수와 비교하면 형편없는 수준이다. 그리고 특이한 것이 처음 테스트에서는 
커터를 인식하지 못했는데 두 번째 테스트에서는 커터를 인식하였다.





정리


대체로 뭔가 하나에 관심을 갖게 되어 실행을 해볼 때까지 구입, 준비, 실행의 과정이 꽤나 길었는데 이번에는
관심을 갖게된 후 이 블로그 포스팅을 작성하기까지 정확히 5일 걸렸다. 거의 일사천리로 진행이 된 것이다.
그거 하나로도 위안이 된다…^^;;

하지만 앞에서도 강조했듯이 라즈베리파이 zero w는 작다는 것 외에는 그닥 쓸모가 없다는 것이 판명났다.
적어도 엣지 컴퓨팅에서는…최소한 라즈베리파이 3 모델 B 이상은 되어야 암에 걸릴 확률을 낮출 수 있을것이다.
아직은 내 수준이 남들 발바닥 언저리에서 노는 수준이다보니 근거는 없지만 뭔가 모델들이 사람이나 차량에
특화된 것 같은 느낌이다. 자율주행 RC카 같은 것 만들어보면 재밌을 것 같다.

물론 조금 더 실력이 된다면 수화 번역기 같은 것을 한 번 만들어보고 싶다.

어쨌든 이렇게 또 하나의 가능성을 맛본 것으로 만족하면서 포스팅을 마친다.


반응형